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Abstract— The thesis focuses on a novel Network Intrusion Detection System (NIDS) based on Federated Learning (FL) and Graph Neural 
Networks (GNNs) for some of the most critical challenges in cybersecurity. The traditional NIDS suffers from an inability to adapt and scale, 
which significantly impairs its performance in confronting the increasingly complex and sophisticated cyber threats. In contrast, this model 
overcomes such limitations by utilizing FL, which trains models across multiple data sources in a truly decentralized fashion without 
necessarily sharing data directly. This will significantly enhance data privacy and security against sensitive network environments. More 
importantly, we further leverage GNNs to analyze complex relational data embedded within network traffic. GNNs effectively map complex 
communications between the entities of the network, hence allowing the detection of sophisticated intrusion tactics that might, for example, 
leverage these relationships. In our case, this lets our system easily outperform traditional rule-based and simple machine learning-based 
NIDS, which cannot cope with the dynamic nature of modern network threats. We integrate XAI techniques into our system in order to show 
its decision-making process in a more transparent and trustworthy way. Explainable Artificial Intelligence (XAI) provides explainable 
interpretations from the model's decisions or predictions, which in turn enable more realistic validation to be performed by network 
administrators and security analysts. In real-world security applications, transparency is of primary importance since insight into the grounds 
for alerts is often required for proper and effective response. In addition, FL, GNNs, and XAI together allow one to advance the technical 
capability of NIDS to meet broader needs around scalability, privacy, and interpretability in cybersecurity tools. This system performs even 
better than some solutions in terms of detection rate and false positive rate, and it has much better privacy-preserving features that could 
stand tall in protecting modern digital infrastructures. The research reveals significant improvements on existing methods, hence showing 
great potential for wide applications in securing networks against various intrusion scenarios. 

Index Terms— Network Intrusion Detection System, Federated Learning, cyber threats, Graph Neural Networks, Explainable Artificial 
Intelligence, privacy, false positive rate, intrusion scenarios    

1 INTRODUCTION                                                                     

or this reason, the rapid evolution of cyber threats requires 
an evolution of Network Intrusion Detection Systems to 
stand up against complex attacks. The traditional ap-
proaches adopted by NIDS [1], relying on rule-based sys-

tems or even simple machine learning models, are ineffective in 
practice for scalability and adaptability reasons and because 
they are not interpretable. These deficiencies result in poor de-
tection performances with respect to complex and new attacks, 
and also cannot provide understandable explanations to cyber-
security experts. Therefore, there is a need for developing NIDS 
that improves the detection capability by preserving data pri-
vacy and transparency of the decision-making process [2]. 

 
This paper aims to propose a new method for NIDS by using 

FL and GNNs, which may provide increased accuracy and ex-
plainability [3]. Federated Learning allows the collaborative 
training of a model across a number of decentralized data 
sources without necessarily sharing sensitive data, hence allow-
ing the preservation of privacy. Simultaneously, GNNs allow a 
powerful framework for network traffic modeling by graph 
structures where nodes are representatives of entities and edges 
represent their communication patterns [4].  

This is with the view to capturing complex relational de-
pendencies in network data, for the detection of sophisticated 
intrusions that exploit such relationships. Techniques from Ex-
plainable AI have been integrated into this work, providing in-
sights that are understandable and interpretable about the 
model's decisions, building trust, thus enabling faster and bet-
ter-considered responses against threats. 

 

Conclusively, this research work aims at developing explain-
ability and maintaining the privacy of NIDS by using Federated 
Learning in conjunction with GNNs. It also intends to show the 
effectiveness in network intrusion detection on a secure, private 
server environment. The proposed system contributes toward 
bridging gaps in cybersecurity whereby data remain within 
their local environment, while their contribution toward a 
global model enhances both privacy and generalizability. Apart 
from this, XAI techniques integrated into the solution provide 
actionable insights into the detection process, thus building 
confidence for network administrators in the output generated 
by the system [5]. 

This paper discusses the proposed NIDS implementation 
methodology, from pre-processing techniques to the use of 
GNNs and federated learning for model training and on-prem-
ises deployment on a private server for maintaining the integ-
rity of organizational data. Further, model evaluation results 
are discussed and the impact of XAI techniques enhancing in-
terpretability is presented. It makes the contribution of a scala-
ble, secure, and explainable network intrusion detection system 
quite suitable for modern cybersecurity challenges. 

2 RELATED WORKS 

NIDS has been a subject of extensive research, with a large 
number of approaches developed for the detection and mitiga-
tion of cyber threats. The traditional approaches to NIDS are 
dominated by either signature-based or anomaly-based detec-
tion techniques. Though the signature-based detection tech-
nique is effective against known threats, it lacks the ability to 
detect new or evolving attack patterns since it depends on 
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predefined rules and signatures. While anomaly-based tech-
niques employ statistical models or machine learning algo-
rithms focused on a deviation from normal behavior, thus 
providing improved capabilities in detecting unknown attacks, 
they often incur high false-positive rates and a lack of interpret-
ability of the decision-making processes [6]. 
 
Recent breakthroughs in machine learning have encouraged 
the use of deep learning models for NIDS. Some of the consid-
ered techniques have included Convolutional Neural Network 
(CNNs) and Recurrent Neural Network (RNNs) for capturing 
complicated patterns from network traffic data, which have 
shown better detection accuracy compared to traditional meth-
ods. These models still suffer from scalability issues, interpret-
ability, and large labeled data requirements. Most of such ap-
proaches need centralized data collection, which in turn raises 
privacy-related concerns in environments that deal with sensi-
tive data [7]. 
 
Federated learning has recently emerged as a promising 
solution to address privacy concerns, in particular by 
enabling collaborative model training across multiple 
decentralized data sources without the need to share raw 
data. In this regard, FL enables different organizations or 
network segments to collaboratively train a global NIDS 
model while maintaining their data localized. Some existing 
works have already applied FL in network security, such as in-
trusion detection and malware classification, and demonstrated 
its potential in improving privacy and data security [8]. How-
ever, most of them are based on traditional machine learning 
models that cannot effectively model the complex relationships 
inherent in network data; thus, their performances are far from 
satisfactory when facing sophisticated attacks. 
 
GNNs have recently gained much attention due to their capa-
bility of modeling relational data in the form of graphs, which 
would make them particularly suitable for applications related 
to network security. Network security problems can naturally 
be cast into the paradigm of graph-structured data: entities, 
such as hosts and IP addresses, interact, for example, through 
flows of communication. GNNs learn the underlying structure 
of network traffic in network anomaly detection and attack pre-
diction tasks [9]. While GNNs provide enormous benefits in 
network data modeling, most of the current studies use central-
ized data gathering and fail to consider mechanisms for pre-
serving privacy; hence, they pose risks in sensitive environ-
ments. 
 
XAI is being regarded increasingly as an essential ingredient in 
cybersecurity applications, with a number of works aiming at 
providing insights into decisions of machine learning models 
and, thus, improve trust and enable response strategies. Vari-
ous XAI methods, such as SHAP and LIME [10], have been ap-
plied to provide intrusion detection models with more inter-
pretability for an analyst to know why certain activities have 
been flagged as malicious. Despite these efforts, most current 
studies receive XAI as an add-on and not embed it into the core 
design of NIDS, heavily limiting its effectiveness in real-time 

decision-making environments. 
 
The gaps in the existing literature are that no integrated ap-
proach exists which combines Federated Learning, GNNs, and 
Explainable AI into a comprehensive, privacy-preserving, and 
interpretable NIDS. Either these works relate to only one aspect, 
such as applying GNNs in anomaly detection but without con-
sidering security for privacy, or using Federated Learning with-
out any advanced modeling techniques, or else they cannot pro-
vide relevant explanations for their decisions [11]. This work 
addresses these lacunas by proposing a novel NIDS that inte-
grates Federated Learning with GNNs and XAI techniques, 
hence the model is scalable, non-vulnerable, and interpretable 
to current network security challenges. 

3 METHODOLOGY 

The goal of this research work is to propose a new network in-
trusion detection system, a NIDS that leverages the use of Fed-
erated Learning, Graph Neural Networks, and Explainable AI 
to provide its capability of intrusion detection and prediction 
with data privacy preservation and interpretability. The major 
components include the following: data preprocessing, model 
development, integrating XAI, and deployment on a private 
server environment. Each component will be detailed in the 
next sections. 

 

3.1 Data Preprocessing 

The core of NIDS is based on the LUFlow Network Intrusion 
Detection Data Set, which comprises flow-based telemetry data 
captured by honeypots at Lancaster University. This dataset 
was used to include both labeled malicious and normal traffic 
classes. Therefore, a large number of pre-processing steps 
needed to be accomplished on this data [12]: 

• Data Ingestion: The collection of network traffic data is 
done from internal sources such as routers, switches, 
and firewalls. The collection of data ingested will be 
automated using Apache NiFi. It ensures the flow of 
data is constant in real time inside the private server 
environment. 

• Real-Time Data Processing: Apache Spark was used to 
process the ingested data in real time, thus enabling 
feature extraction and transformation on a large scale. 
Key features include IP address, port number, proto-
col, number of bytes, number of packets, and entropy 
measure. Normalization and standardization of data 
were carried out using Scikit-Learn tools such as 
StandardScaler and OneHotEncoder. 

• Graph Construction: We converted the pre-processed 
data into graph representations with NetworkX to take 
advantage of the relational structure of network traffic. 
In these graphs, nodes represent hosts-for example, IP 
addresses-and edges represent the communication 
flow between these hosts. We added attributes like 
time duration and connection frequency to enrich 
nodes and edges, respectively, in order to convert them 
into suitable graph formats for GNNs. 
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3.2 Model Development 

The core of the NIDS model employs Graph Neural Net-
works, along with Federated Learning for privacypreserving 
collaborative learning in decentralized environments. For this, 
the model development process comprises: 

• Graph Neural Networks: The use of GNNs is consid-
ered because of their capability of modeling complex 
relational data present in network traffic.    In particu-
lar, we will adopt different GNN architectures, such as 
Graph Convolutional Networks and Graph Attention 
Networks, which will be implemented using Tensor-
Flow and Spektral [13]. These models learn complex 
patterns of normal and malicious traffic in graph-struc-
tured data and thus are trained. Therefore, models 
trained with such graph-structured data are evaluated 
on standard metrics, such as accuracy, precision, recall, 
and F1-score, to ensure their high performance in in-
trusion detection. Federated Learning: With data pri-
vacy to be maintained in model training across net-
work segments inside the organization, TFF was used 
for Federated Learning [14]. 

• Each segment is trained on a local model in its respec-
tive client data, and only the model weights are shared 
with a central server where aggregation is performed 
to finally form a global model. The diversity in data 
sources will benefit the NIDS using this approach 
without compromising privacy. This will include 
methods like Differential Privacy-using TensorFlow 
Privacy-and Secure Multi-Party Computation-using 
PySyft-further securing sensitive information in a fed-
erated learning process [15]. 

 
3.3 Explainable AI (XAI) Integration 

XAI techniques were incorporated into the model to make 
the NIDS transparent and explainable. This will be important 
in establishing trust with network administrators and support-
ing informed, quick reactions to any perceived threat [16]. 

• Integration of SHAP and LIME: SHAP and LIME were 
used for explaining the model predictions [17]. These 
techniques would provide global and local explana-
tions for a particular traffic pattern that has been 
flagged as malicious. SHAP was used to determine 
what contribution each feature had to the model's out-
put, while LIME provided instance-level explanations 
useful for understanding specific detection cases. 

• Custom Visualization Tools: Such outputs of XAI 
needed to be made more usable; therefore, various vis-
ual tools were developed based on Plotly Dash and 
D3.js. These kinds of tools have provided network ad-
ministrators with an interactive way to understand the 
model explanations themselves-easily and intuitively-
with respect to what factors drive the detection deci-
sions [18]. 

3.3 Deployment on a Private Server 

The NIDS was deployed within the organization on a private 
server environment for data security and compliance of internal 

policies. Some of the technical considerations while deploying 
NIDS included: 

• The NIDS backend is implemented in FastAPI, 
hence it inherently uses a highperformance frame-
work supporting asynchronous programming na-
tively. RESTful APIs and GraphQL endpoints have 
further been implemented on top to cater for data 
ingestion, model training, and prediction requests 
along with fetching XAI explanations. All these op-
erations were performed in this private server for 
full control over it [19]. 

• It used Celery for task management, along with Re-
dis. The goal of the integration was to run models, 
batch processes, data pre-processing asynchro-
nously with Celery using Redis as a message broker, 
hence ensuring that tasks get scheduled smoothly 
and resources are optimally utilized inside the 
server without overloads. 

• Monitoring and Logging: Prometheus was used to 
provide runtime monitoring of system performance 
through metrics such as API response times and 
model inference latency. For metric visualization, 
Grafana was configured with these metrics using in-
teractive dashboards that allowed system adminis-
trators to take proactive steps in managing the 
NIDS. The ELK Stack, consisting of Elasticsearch, 
Logstash, and Kibana, was used for collecting and 
analyzing logs coming from the different parts of 
the system to enable efficient debugging and opera-
tional insights. 

This private server environment provided a place where the 
NIDS was tested extensively to ensure that all components 
worked together seamlessly. The setup was made such that it 
not only would protect data privacy but also support organiza-
tional policies, which therefore made this system very suitable 
for actual deployment in real-world scenarios. 

4 RESULTS 

The proposed NIDS applied the LUFlow Network Intrusion 
Detection Data Set, which includes a number of classes of net-
work traffic: Normal, DDoS, Port Scan, Botnet, Brute Force, and 
Infiltration. Key metrics considered for the evaluation of model 
performance are accuracy, precision, recall, F1-score, and a de-
tailed confusion matrix showing the effectiveness of the model 
in distinguishing between different types of network traffic 
[20]. 

 
4.1 Performance Metrics 

Extensive testing of the model under various scenarios has 
been performed to make sure that it is robust and reliable. Fig-
ure 1 summarizes the main performance metrics reached with 
different model setups. 

• Precision: The overall accuracy, which is the total 
number of correctly classified instances with respect 
to the total number of instances, for the model 
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Federated GNN was maximum for GAT [21] with 
96.7%, followed by Federated GNN for GCN with 
96.1% and the Centralized GNN model with 95.2%. 

• Precision: It is the ratio of true positive detection out 
of total detection flagged as positive, or malicious. 
For different classes, precision ranged from 92.8% 
for the DDoS detection to 95.3% for Botnet detection 
across classes in the federated GNN-GAT model. 

• Recall: Recall is the ratio of actual malicious in-
stances identified correctly. The recall values were 
different for different malicious types, from a high 
of 96.2% for Botnet detection to a low of 93.0% for 
Port Scan on the Federated GNN-GAT model. 

• F1-Score: It gives the balance of precision and recall; 
thus, the highest F1-score value, 95.7%, in the Fed-
erated GNN-GAT model for detecting Infiltration 
attacks. Furthermore, other malicious types have 
also given out high F1-scores, signifying that the 
performance is balanced on all classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2 Confusion Matrix 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 represents the confusion matrix for a detailed break-
down of the performance over all model classes in counts of 
true positives, false positives, true negatives, and false nega-
tives for each kind of network traffic. This matrix testifies to the 
model's ability to correctly separate the normal traffic out of 
many kinds of malicious traffic while maintaining a low error 
rate. 

4.3 Impact of Federated Learning and GNNs 

Such performance lift was brought in by the integration of Fed-
erated Learning and GNNs. The performance of a Federated 
Learning setup-such that it could handle decentralized data 
sources consistently-shows its performance is not very far from 
a model that is globally trained on centralized data with mini-
mum loss of accuracy. That's where Federated Learning helps: 
it improves privacy without sacrificing much of the detection 
quality. 

GNN Model Performance Trend: Figure 3 shows a line graph 
representing the performance trend of different GNN architec-
tures, such as GCN and GAT under different network condi-
tions. In the more complex network scenario, the GAT model 
constantly performs better than the GCN model since it can al-
low different attention weights for neighbor nodes and lead to 
stronger adaptability and higher accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
4.4 Explainable AI (XAI) Evaluation 

XAI techniques such as SHAP and LIME have been incorpo-
rated to provide interpretability regarding the model decisions, 
entailing which features give the most contribution to deciding 
upon malicious activity. The transparency will be crucial for the 
network administrators to understand and believe the system 
outputs, particularly in real-time decision environments. 

• SHAP Analysis: SHAP values pointed out the most im-
portant features within the model's detection deci-
sions: protocol type, byte counts, and connection dura-
tion. 

 
Fig. 1 Comparison of different model settings regarding accuracy, pre-
cision, recall, and F1-score. 

 
Fig. 2 Confusion matrix. The confusion matrix underlines the perfor-
mance of the model in classifying various types of traffic. The model 
classifies both normal traffic and specific malicious activities, such as 
Botnet and Infiltration attacks, quite well, with relatively low misclassi-
fications in these classes. 

 

Fig. 3 It shows that the GAT model better fits the intricate structure of 
networks and has yielded a higher performance in comparison with the 
GCN model. 
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• LIME Interpretability: LIME offered local explanations 
that underlined particular outlier cases, giving insight 
into complex attack scenarios. 

The application of integrated XAI methods was useful in gain-
ing improved interpretability and trust of the NIDS and, there-
fore, found practical applicability in real network security. 

5 DISCUSSION 

Proposed NIDS results show great enhancements in intrusion 
detection and prediction capability compared to traditional so-
lutions and existing machine learning-based solutions. It lever-
ages Federated Learning, GNNs, and XAI to solve some of the 
critical gaps in scalability, privacy, and interpretability affecting 
conventional NIDS solutions in this work. 

5.1 Comparison with Existing Solutions 

Traditional approaches to NIDS, including signature-based 
and anomaly-based methods, have completely failed when it 
comes to complex and evolving cyber-attacks. While signature-
based detection works for known attacks, it does not generalize 
to new or previously unseen attack patterns. Anomaly-based 
approaches normally employ simple statistical models or basic 
machine learning algorithms, which are plagued by high false 
positives because these models fail to learn the intrinsic rela-
tionships that exist within network flow data. 

Recent enhancement of deep learning-based NIDS like CNN 
and RNN has empowered the detection of threats in networks 
with higher accuracy for different kinds [22]. However, most of 
these models require centralized data gathering; thus, it raises 
privacy concerns in sensitive data environments. Their inoper-
able nature also makes it difficult for the network administrator 
to take appropriate action upon an alert. 

The proposed NIDS uses Federated Learning so that model 
training can be performed collaboratively among decentralized 
environments without sharing raw data. This will keep the sen-
sitive network data in their respective local environment while 
their contribution is made to a global model in a very privacy-
preserving manner. GNNs further strengthen this detection ca-
pability by modeling network traffic as graph-structured data, 
encapsulating complex relationships among network entities, 
and enabling the detection of sophisticated attacks capable of 
leveraging such relationships. In summary, the results indi-
cated that the proposed Federated GNN models, in particular, 
the GAT architecture, outperform conventional deep learning 
models concerning detection accuracy and adaptability to vari-
ous network conditions. 

5.2 Effectiveness of Federated Learning and GNN 
Models 

In the proposed NIDS, with the amalgamation of Federated 
Learning, detection accuracy was high and proved to be very 
effective for maintaining data privacy. Unlike centralized mod-
els, which are collecting and processing all data in a single lo-
cation, Federated Learning independently trains each segment 

of a network-a client-on its respective data. Then, it assembles 
these local models into the global model without breaching the 
privacy or security of the data. It means that the accuracy of the 
Federated GNN model test results is as high as 96.7%, about 
only a 0.5% performance loss compared to the centralized 
model. This can prove that federated learning may achieve al-
most centralized performance with guaranteed data privacy. 

Specially, in this work, some GNN methods show remarkable 
advantages for extracting those complicated dependency fea-
tures of network traffic data, such as GCN and GAT architec-
tures. By adopting the attention mechanism, the weight of dif-
ferent neighbor nodes in the GAT model can effectively en-
hance the detection performance of various kinds of malicious 
traffic flow, especially in the complex network scenarios. The 
GAT model focused dynamically on the relevant parts of the 
network graph, and such was its impact that it improved the 
detection rates by 4.5% compared to the traditional non-GNN 
methods. It proved that GNN has great potential for improve-
ment in NIDS with deeper network behavior and anomaly un-
derstanding. 

5.3 Advantages of Explainable AI in Practical 
Applications 

Explainable AI components, such as SHAP and LIME, lever-
age an added important layer of transparency into the proposed 
NIDS. Although most of the available solutions of NIDS act like 
black-box models that provide hardly any insight into their de-
cision-making process, the integration of XAI techniques ena-
bles the network administrator to gain insight into why certain 
network activities were classified as malicious. This is espe-
cially significant for practical applications, where belief in the 
results of the system and quick response to threats are at stake 
[23]. 

The SHAP analysis provided global interpretability in the 
feature importance of the most influencing features for the pre-
dictions, such as protocol type, byte counts, and connection du-
ration. This will help administrators to decide which feature to 
monitor and take more serious intervention based on the im-
portance of the feature. On the other hand, LIME can provide 
localized explanations of the predictions at an individual level, 
thus enabling finer-grain analysis, particularly of outlier cases 
of detection. Because of this, it is beneficial in the investigation 
and response that generally involve complex cases or novel at-
tacks [24]. 

The addition of XAI components not only makes the NIDS 
more interpretable but also serves to establish confidence in it 
with network administrators. XAI can allow for an even more 
informed and, thereby, effective response to whatever threat 
may present itself by illuminating with crystalline clarity how 
said model is making its decisions, thereby enhancing the over-
all security posture of the network. 

The proposed NIDS integrates Federated Learning, GNNs, and 
XAI. As a result, it therefore effectively addresses the main chal-
lenges of privacy, scalability, and interpretability. The results 
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also indicate that the proposed approach is effective in the de-
tection of a wide range of network intrusions while preserving 
data privacy and offering valuable insights through XAI tech-
niques. This combination makes the system highly suitable for 
real-world network environments where data security, model 
accuracy, and transparency are very crucial. 

6 FUTURE DIRECTIONS 

This research thereby opens avenues for future research since 
the field of cybersecurity and machine learning is dynamic. 
Firstly, extending the research to much more diverse datasets 
should go a long way in making the developed system more 
robust. The incorporation of real-time threat intelligence feeds, 
thereby integrating data from heterogeneous sources like IoT 
devices and cloud environments, would most certainly give a 
broader view regarding the emergent threats. 

Second, the investigation of advanced machine learning tech-
niques, such as reinforcement learning and federated learning, 
could serve to further enhance the adaptability and scalability 
of a developed threat detection system across a wide variety of 
organizational settings. While reinforcement learning will let 
the system learn from its environment through feedback and 
refine its detection strategies over time, federated learning will 
enable collaborative learning with the guarantee of data pri-
vacy. 

Other improvement might be achieved by incorporating XAI 
methods into the system, as this could help enhance transpar-
ency and trust through clear explanations of decisions taken by 
threat detection models. This will be very beneficial for regula-
tory compliance and auditing. 

Finally, the performance assessment of the system in adversar-
ial settings and development of robust defenses against adver-
sarial attacks would provide further evidence for real-world ef-
fectiveness. This direction allows for great potential to contrib-
ute toward next-generation Security Operation Centers and 
their capabilities in mitigating emerging cyber threats. 

7 CONCLUSION 

This research work has proposed a novel approach to NIDS by 
integrating the methods of Federated Learning, Graph Neural 
Networks, and Explainable AI techniques. The system here is 
designed to mitigate some critical challenges in traditional 
NIDS over scalability, privacy preservation, and interpretabil-
ity. The results of this evaluation showed that the Federated 
GNN models-again, with emphasis on GAT architecture-rela-
tively outperformed traditional deep learning models in multi-
class network intrusion detection, including DDoS, Port Scan, 
Botnet, Brute Force, and Infiltration. With a Federated Learning 
framework, models could be collaboratively trained across de-
centralized environments without compromising data privacy 
while showing performance comparable to their centralized 
models. This approach allows the sensitive network data to stay 
within its local environment while still contributing to a robust 
global model. 

The promising performance of the GNN models in capturing 
complex relational patterns of network traffic data was indica-
tive of their future promise in the detection of sophisticated and 
evolving cyber threats utilizing these relationships. Among 
them, the GAT model showed especially good adaptability in 
complex network scenarios, as it is able to assign different at-
tention weights to neighboring nodes. This greatly improves 
the detection rate. What's more, some techniques of XAI, such 
as SHAP and LIME, are integrated into the system and provide 
interpretable insights on how the model decides about its out-
put. In such a way, the interpretability for the whole system is 
enhanced, which will lead to much more confidence from net-
work administrators. This transparency is of paramount im-
portance in practical applications, where the interpretation of a 
detected decision can inform effective threat mitigation and re-
sponse. 

These results have several implications regarding the future of 
network security. First, the proposed NIDS demonstrates that 
privacy-preserving machine learning methods, such as Feder-
ated Learning, can work with advanced models like GNNs to 
enhance detection capability while ensuring data security. It 
makes the solution scalable and secure to be deployed in any-
thing, from enterprise-level networks up to critical infrastruc-
ture systems. Future studies can be done on integrating more 
advanced GNN architectures and optimization of federated 
learning algorithms, which give robustness and efficiency to the 
models. Second, further development of the XAI capabilities 
into more detailed and user-friendly visualizations could help 
in making the system more usable by the network operators 
and cybersecurity professionals. Another potential benefit with 
this approach is that it enables taking advantage of adaptation 
opportunities for other domains where secure, scalable, and in-
terpretable machine learning solutions are in demand. 

REFERENCES 

[1] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey 
of intrusion detection systems: techniques, datasets and 
challenges,” Cybersecurity, vol. 2, no. 1, p. 20, 2019, doi: 
10.1186/s42400-019-0038-7. 

[2] A. Khraisat and A. Alazab, “A critical review of intrusion 
detection systems in the internet of things: techniques, 
deployment strategy, validation strategy, attacks, public datasets 
and challenges,” Cybersecurity, vol. 4, no. 1, p. 18, 2021, doi: 
10.1186/s42400-021-00077-7. 

[3] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Cyber 
Threat Intelligence Sharing Scheme Based on Federated Learning 
for Network Intrusion Detection,” J. Netw. Syst. Manag., vol. 31, no. 
1, p. 3, 2022, doi: 10.1007/s10922-022-09691-3. 

[4] X. Gu, F. Sabrina, Z. Fan, and S. Sohail, “A Review of Privacy 
Enhancement Methods for Federated Learning in Healthcare  
Systems.,” Int. J. Environ. Res. Public Health, vol. 20, no. 15, Aug. 
2023, doi: 10.3390/ijerph20156539. 

[5] S. Agrawal et al., “Federated Learning for intrusion detection 
system: Concepts, challenges and future directions,” Comput. 
Commun., vol. 195, pp. 346–361, 2022, doi: 
10.1016/j.comcom.2022.09.012. 

[6] M. Bhavsar, K. Roy, J. Kelly, and O. Olusola, “Anomaly-based 
intrusion detection system for IoT application,” Discov. Internet 
Things, vol. 3, no. 1, p. 5, 2023, doi: 10.1007/s43926-023-00034-5. 

[7] R. Mohammad, F. Saeed, A. A. Almazroi, F. S. Alsubaei, and A. A. 

http://www.ijser.org/


IJSER

International Journal of Scientific & Engineering Research, Volume 15, Issue 9, August-2024 7 

ISSN 2229-5518 

 

IJSER © 2024 

http://www.ijser.org  

Almazroi, “Enhancing Intrusion Detection Systems Using a Deep 
Learning and Data Augmentation Approach,” Systems, vol. 12, no. 
3. 2024, doi: 10.3390/systems12030079. 

[8] N. Rieke et al., “The future of digital health with federated 
learning.,” NPJ Digit. Med., vol. 3, p. 119, 2020, doi: 
10.1038/s41746-020-00323-1. 

[9] S. Rahmani, A. Baghbani, N. Bouguila, and Z. Patterson, “Graph 
Neural Networks for Intelligent Transportation Systems: A 
Survey,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 8, pp. 8846–
8885, 2023, doi: 10.1109/TITS.2023.3257759. 

[10] F. Charmet et al., “Explainable artificial intelligence for 
cybersecurity: a literature survey,” Ann. Telecommun., vol. 77, no. 
11, pp. 789–812, 2022, doi: 10.1007/s12243-022-00926-7. 

[11] A. Nadeem et al., “SoK: Explainable Machine Learning for 
Computer Security Applications,” Proc. - 8th IEEE Eur. Symp. 
Secur. Privacy, Euro S P 2023, pp. 221–240, 2023, doi: 
10.1109/EuroSP57164.2023.00022. 

[12] M. Ahmad, Q. Riaz, M. Zeeshan, H. Tahir, S. A. Haider, and M. S. 
Khan, “Intrusion detection in internet of things using supervised 
machine learning based on application and transport layer 
features using UNSW-NB15 data-set,” EURASIP J. Wirel. Commun. 
Netw., vol. 2021, no. 1, p. 10, 2021, doi: 10.1186/s13638-021-01893-
8. 

[13] J. Zhou et al., “Graph neural networks: A review of methods and 
applications,” AI Open, vol. 1, pp. 57–81, 2020, doi: 
https://doi.org/10.1016/j.aiopen.2021.01.001. 

[14] J. L. Hernandez-Ramos et al., “Intrusion Detection based on 
Federated Learning: a systematic review,” 2023, [Online]. 
Available: http://arxiv.org/abs/2308.09522. 

[15] E. Ntizikira, W. Lei, F. Alblehai, K. Saleem, and M. A. Lodhi, 
“Secure and Privacy-Preserving Intrusion Detection and 
Prevention in the Internet of Unmanned Aerial Vehicles,” Sensors, 
vol. 23, no. 19. 2023, doi: 10.3390/s23198077. 

[16] C. I. Nwakanma et al., “Explainable Artificial Intelligence (XAI) for 
Intrusion Detection and Mitigation in Intelligent Connected 
Vehicles: A Review,” Applied Sciences, vol. 13, no. 3. 2023, doi: 
10.3390/app13031252. 

[17] V. Vimbi, N. Shaffi, and M. Mahmud, “Interpreting artificial 
intelligence models: a systematic review on the  application of 
LIME and SHAP in Alzheimer’s disease detection.,” Brain 
informatics, vol. 11, no. 1, p. 10, Apr. 2024, doi: 10.1186/s40708-024-
00222-1. 

[18] S. A. Allegri, K. McCoy, and C. S. Mitchell, “CompositeView: A 
Network-Based Visualization Tool.,” Big data Cogn. Comput., vol. 
6, no. 2, Jun. 2022, doi: 10.3390/bdcc6020066. 

[19] O. R. By and R. College, “NATIONAL CONFERENCE on VLSI , 
Publication Partner : IJARIIE RECOGNITION OF ADHD 
SYNDROME,” vol. 4396, no. 1, 2023. 

[20] L. Li, Y. Lu, G. Yang, and X. Yan, “End-to-End Network Intrusion 
Detection Based on Contrastive Learning.,” Sensors (Basel)., vol. 24, 
no. 7, Mar. 2024, doi: 10.3390/s24072122. 

[21] H. Noor, N. Islam, M. S. Hossain, N. Kamarudin, M. Raiaan, and 
S. Azam, Determining the Optimal Number of GAT and GCN Layers 
for Node Classification in Graph Neural Networks. 2023. 

[22] E. U. Qazi, M. H. Faheem, and T. Zia, “HDLNIDS: Hybrid Deep-
Learning-Based Network Intrusion Detection System,” Applied 
Sciences, vol. 13, no. 8. 2023, doi: 10.3390/app13084921. 

[23] M. Keshk, N. Koroniotis, N. Pham, N. Moustafa, B. Turnbull, and 
A. Y. Zomaya, “An explainable deep learning-enabled intrusion 
detection framework in IoT networks,” Inf. Sci. (Ny)., vol. 639, p. 
119000, 2023, doi: https://doi.org/10.1016/j.ins.2023.119000. 

[24] R. Hamilton and P. Papadopoulos, Using SHAP Values and Machine 
Learning to Understand Trends in the Transient Stability Limit. 2023. 

 

http://www.ijser.org/

